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Abstract. Evaluating lesion progression and treatment response via
longitudinal lesion tracking plays a critical role in clinical practice. Auto-
mated approaches for this task are motivated by prohibitive labor costs
and time consumption when lesion matching is done manually. Previous
methods typically lack the integration of local and global information. In
this work, we propose a transformer-based approach, termed Transformer
Lesion Tracker (TLT). Specifically, we design a Cross Attention-based
Transformer (CAT) to capture and combine both global and local infor-
mation to enhance feature extraction. We also develop a Registration-
based Anatomical Attention Module (RAAM) to introduce anatomical
information to CAT so that it can focus on useful feature knowledge.
A Sparse Selection Strategy (SSS) is presented for selecting features
and reducing memory footprint in Transformer training. In addition,
we use a global regression to further improve model performance. We
conduct experiments on a public dataset to show the superiority of our
method and find that our model performance has improved the aver-
age Euclidean center error by at least 14.3% (6 mm vs. 7 mm) compared
with the state-of-the-art (SOTA). Code is available at https://github.
com/TangWen920812/TLT.
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1 Introduction

The ability to accurately locate the location of follow-up lesions and subsequent
quantitative assessment, referred to as “lesion tracking,” is crucial to a variety of
medical applications, in particular, cancer management. In practice, physicians
need to spend significant time and effort to precisely match the same lesion across
different time points. Thus, its investigation into a fully automated method of
lesion tracking or lesion matching is highly desirable. However, compared with
a large number of studies on lesion segmentation and detection [19,22], there are
very few studies on lesion tracking [4,11]. In the field of natural images, there is a
similar problem called target tracking or object tracking, for which several deep
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learning-based methods have been proposed [3,12,23]. One of the simplest and
most straightforward ideas is to apply these existing methods to lesion tracking
tasks. However, lesion tracking is different from the aforementioned visual track-
ing in a number of aspects: (1) Medical imaging data are mostly in 3D format.
(2) The lesion size varies at different time points, such as increasing, shrinking,
or stabilizing. (3) The appearance of the lesion may change during the follow-up
examination while its anatomical location remains unchanged. Thus, an effective
lesion tracker should account for the differences in the lesion itself and be able
to use anatomical information effectively. However, existing registration-based
trackers [18,21] are not robust for small-sized lesions or heavily deformed lesions
due to lack of sensitivity to local details, and Siamese networks [9,12] overlook the
information around the lesion. Cai et al. [4] first provided an open-source dataset
for lesion tracking and designed Deep Lesion Tracker (DLT), which combines the
advantages of both strategies and obtained a baseline on this dataset. Although a
large kernel size is extracted in cross correlation layers of DLT to encode the global
image context, it is still susceptible to the inductive bias in convolution, leading
to deviation in the aggregation of information around the lesion.

In this work, we leverage Transformer architecture, inspired by TransT [7],
to replace existing cross correlation, and propose a novel Transformer Lesion
Tracking framework (named TLT) using 3D features. To achieve our model, we
design a Cross Attention-based Transformer (CAT) to capture global informa-
tion. To better focus on useful features, we also introduce anatomical priors via
the proposed Registration-based Anatomical Attention Module (RAAM) into
CAT. Meanwhile, considering the memory cost in training process, we present a
Sparse Selection Strategy (SSS) to extract the local effective information from
the whole template image as input for CAT. In addition, we use a global regres-
sion as output to reduce the effect of insufficient multi-scale information and
accelerate convergence. The experimental results show that the proposed method
achieves better performance on the open-source dataset compared with the state-
of-the-art methods.

2 Related Work

Registration-Based Trackers. The anatomy presented in a patient’s medi-
cal images at different time points should be similar in the absence of surgery
or similar treatment. Thus, lesion tracker should follow a spatial consistency
that the tissue or the structure around a lesion, and the organ in which the
lesion is located will not change significantly. Under this assumption, existing
registration methods, such as Voxelmorph [1], provide solutions for lesion track-
ing. Since registration algorithms [10,15] focus on alignment or optimization on
global structures, registration-based lesion trackers achieve decent performance
for large-sized lesions or relatively stable lesions [18,21]. Still, due to the lack of
sensitivity of registration algorithms to image details, these registration-based
methods obtain reduced performance when dealing with small-sized lesions or
heavily deformed lesions. In this study, we treat image registration as an auxiliary
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operation, thereby improving model training efficiency as well as performance.
Specifically, we select the mask registered via an affine registration method [15]
as the prior attention and introduce it into the Transformer. The subsequent
ablation experiment results demonstrate the effectiveness of this operation.

Siamese Networks. In recent years, Siamese-based methods have been pop-
ular in the field of visual object tracking. SiamFC [2], and its variants such as
SiamRPN [13] and SiamRPN++ [12], are among the representative works. Sub-
sequently, existing studies have demonstrated that lesion tracking could also be
done using Siamese-based methods. Gomariz et al. [9] and Liu et al. [14] applied
2D Siamese networks for lesion tracking in ultrasound sequences. Whereas
Rafael-Palou et al. [17] performed 3D Siamese networks to track lung nodules on
CT series. Cai et al. [4] followed SiamRPN++ to use 3D Siamese networks to con-
duct universal lesion tracking in whole body CT images. These Siamese-based
methods mainly consist of two parts: a backbone network for feature extrac-
tion and a correlation module to calculate the similarity between the template
patch and the searching sub-region. However, such module is susceptible to the
inductive bias of convolution operation and fails to fully utilize the global con-
text, leading to local optimum in the optimization process. Thus, we introduce
an attention-based Transformer architecture to focus on the key object in the
global feature space, while replacing the correlation part.

Transformer-Based Tracking. In recent years, Transformer architecture [24]
has taken over recurrent neural networks in natural language processing [8,20],
and has also had an impact on the status of convolutional neural networks in
computer vision [6,16]. More recently, Chen et al. [7] proposed a target tracking
method on natural images with Transformer architecture instead of the cross
correlation layers and achieved SOTA results. However, several issues remain
to be addressed when applying Transformer to lesion tracking on 3D medical
images. Specifically, to reduce memory cost and acquire features of different
sized lesion adaptively, we design a sparse selection strategy to extract irregular
patches from template feature maps as input to Transformer. To introduce prior
anatomical structure information to Transformer, we create a registration-based
attention guidance for auxiliary model training.

3 Method

Problem Description. Same as object tracking [2], lesion tracking aims to find
its corresponding position in the searching image Is when given a lesion in the
template image It. Similar to [4], we simplify this task: given a lesion l in It with
its known center ct and radius rt, we seek a mapping function F to predict the
center cs of l in Is.

Overview. In this lesion tracking task, we define the baseline CT scan as the
template image It ∈ R

Dt0×Ht0×Wt0 , and a corresponding follow-up CT scan as
the searching image Is ∈ R

Ds0×Hs0×Ws0 . Dt0, Ht0 and Wt0 represent the depth,
height and width of the template image, respectively. And Ds0, Hs0 and Ws0 are
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similarly defined for searching image. The proposed lesion tracking network (TLT)
mainly consists of three components, as shown in Fig. 1. The feature extractor
stacks 3D convolution and downsampling layers to efficiently represent the input
volumes. The proposed sparse selection strategy is used for memory reducing and
efficient feature acquisition. Then, the cross attention-based Transformer (CAT)
is used to fuse the features of the searching and the selected template. In the CAT,
a mask gained from the registration-based anatomical attention module (RAAM)
is inserted to enhance fused features. Finally, the center predictor is responsible
for getting the result from the output of Transformer.

3.1 Feature Extractor and Sparse Selection Strategy

In the proposed network, a modified 3D ResNet18 with shared weights is
employed as the feature extractor. Compared with the original one, we remove
the last stage of ResNet18, and take outputs of the fourth stage as final out-
puts. We also adjust the stride of the first convolutional layer from 2 × 2 × 2
to 1 × 1 × 1 to obtain a larger feature resolution. Considering the parame-
ter redundancy and overfitting in 3D networks, the number of feature chan-
nels in each stage is reduced by half or more (see Fig. 1). Putting It and Is

through the learnable feature extractor respectively, their own image features
Ft,ori ∈ R

C×Dt×Ht×Wt , Fs,ori ∈ R
C×Ds×Hs×Ws are obtained for subsequent pro-

cesses, where Dt,Ht,Wt = Dt0
8 , Ht0

8 , Wt0
8 , Ds,Hs,Ws = Ds0

8 , Hs0
8 , Ws0

8 , C = 192.
As shown in Fig. 1(a), template-based feature mining via the proposed sparse

selection strategy (SSS) precede the CTA to select features and to reduce mem-
ory cost. This is feasible because the location of the lesion in the template input
It is known, and we believe the features Ft,ori to have already incorporated local
contextual information. The following are the details of the SSS flow. Given a
lesion in the template image, we first generate a three-dimensional Gaussian map
G based on the known center and radius of the lesion, which is formulated by:

G(c, r) = exp(−
∑

i∈(x,y,z)(i − ci)2
∑

i∈(x,y,z)(2ri)2
) (1)

Specifically, for the lesion l in It with its center ct and radius rt, the generated
Gaussian map Gt is Gt(ct, rt). Next, we resize Gt to the size of Ft,ori by trilinear
interpolation, and obtain the resized Gaussian map G̃t. Selecting a threshold Tr
and using G̃t as a reference mask, we extract valid features Ft,sparse from the
Ft,ori as an input of the Transformer: Ft,sparse = Ft,ori(x, y, z|G̃t(x, y, z) > Tr)

3.2 Cross Attention-Based Transformer

Unlike the similarity-based correlation module used in the previous Siamese-based
networks, we design a Cross Attention-based Transformer (CAT) to combine
global and local context. Queries Q, keys K and values V are encoded from same
source in Transformer [24]. But in CAT, to grab global context and blend mul-
tiple features of different sizes, we adopt cross-attention (CA), in which K, V
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Fig. 1. (a) Overall structure of the proposed network. (b) Cross attention in CAT. (c)
Structure of RAAM

are stemmed from the same input while Q from another. In TLT, we put a CA
on each of the template and searching path respectively (see Fig 1(a)). In CA of
the template line, K and V are encoded from the reshaped Fs,ori : Fs,reshape ∈
R

DsHsWs×C andQ is encoded from the reshapedFt,sparse :Ft,reshape ∈ R
L×C , L =

len(Ft,sparse). While in CA of the searching line, K, V and Q have the opposite ori-
gins to those in the template one. In short, as shown in Fig. 1(b), Q is encoded from
the features which need enhancement (Fq), and K, V are encoded from the other
(Fkv). We apply CA on each lines for N(N = 3) times, and use another CA on
searching line to obtain the final output features: Fs,CTA.

We further create a novel structure called Registration-based Anatomical
Attention Module (RAAM) to calculate an anatomical information mask MA,
whose transpose is taken as MT

A (see Fig. 1(c)). As described above, the anatom-
ical information is needed for lesion tracking. Thus, we create a matrix to pro-
vide the anatomical information for each of template and searching side. For tem-
plate side, we assume all the voxels in Ft,reshape are of the same importance,
and we build a matrix O ∈ R

L×1, in which all elements are 1. For searching
side, we first use an affine registration method [15] to roughly align It and Is by
solving: TAff = arg min||TAff(It) − Is||1. We choose to use an affine registration
method instead a non-rigid one because the non-rigid registration is slow and pro-
vides restriction to the attention that limit the model’s ability to learn for local
variation and details. Then, we can obtain a registration-based Gaussian map
Gs = TAff(Gt). Afterwards, we downsample Gs to the size of Fs,ori and reshape
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it to Gs,reshape ∈ R
DsHsWs×1, which is defined as the matrix of searching side.

Finally, MA can be calculated by the following formula:

MA = O ⊗ GT
s,reshape (2)

where ⊗ is matrix multiplication operation, and MA ∈ R
L×DsHsWs . So the

attention we use in CAT at each head (see Fig. 1(b)) can be define as following:

Attentioni(Q,K, V ) = softmax(
(QWQ

i )(KWK
i )T√

dk

+ MA)(V WV
i ), (3)

where WQ
i , WK

i , WV
i are parameter matrices, dk is the dimension of key, i ∈

{1, ..., h} is the index of head and h is the number of heads in multiple head
attention.

3.3 Center Predictor and Training Loss

Similar to the head of detection networks, our center predictor consists of a
classification branch and a regression branch, where each branch is a multilayer
perceptron (MLP). The classification head is to classify if a voxel from the out-
put is inside of a lesion, and the regression head is to regress the exact center
position. In detail, after inputting the features Fs,CTA, the predictor outputs the
classification results Ŷ ∈ R

1×DsHsWs and center coordinates Ĉ ∈ R
3×DsHsWs .

During training, we define the ground truth as a Gaussian map generated by
Eq. 1 with the target center cs and the corresponding radius rs. We downsample
it to obtain the Gaussian label GL which matches the size of Ŷ , and obtain
label Y = GL−min(GL)

max(GL)−min(GL) . L1 loss is used as the regression loss, which is
formulated as:

Lr = ||ĉ − cs||1, ĉ =
∑

softmax(Ŷ ) ∗ Ĉ (4)

where ĉ is the final output of the center predictor, which we define as global
regression. Meanwhile, a focal loss [4] is used as the classification loss for auxiliary
training:

Lc =
∑

i

{
(1 − ŷi)αlog(ŷi) if yi = 1
(1 − yi)β(ŷi)αlog(1 − ŷi) otherwise

(5)

where yi and ŷi are the i-th elements in Y and Ŷ , respectively, and α = β = 2.

4 Experiments and Experimental Results

4.1 Dataset and Experiment Setup

Dataset. We validate our method on a public dataset, DLS [4], which consists
of CT image pairs inherited from DeepLesion [27]. There are 3008, 403 and
480 lesion pairs for training, validation, and testing in this dataset, respectively.
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Table 1. Lesion tracking comparison on Deep Lesion Tracking testing dataset. ∗ rep-
resents the p value of paired t-test is smaller than 0.05.

Method CPM@
10 mm

CPM@
Radius

MEDX

(mm)

MEDY

(mm)

MEDZ

(mm)

MED
(mm)

Affine [15] 48.33 65.21 4.1 ± 5.0 5.4 ± 5.6 7.1 ± 8.3 11.2 ± 9.9

VoxelMorph [1] 49.90 65.59 4.6 ± 6.7 5.2 ± 7.9 6.6 ± 6.2 10.9± 10.9

LENS-LesioGraph [25,28] 63.85 80.42 2.6± 4.6 2.7 ± 4.5 6.0 ± 8.6 8.0 ± 10.1

VULD-LesionGraph [5,28] 64.69 76.56 3.5 ± 5.2 4.1 ± 5.8 6.1 ± 8.8 9.3 ± 10.9

VULD-LesaNet [5,26] 65.00 77.81 3.5 ± 5.3 4.0 ± 5.7 6.0 ± 8.7 9.1 ± 10.8

SiamRPN++ [12] 68.85 80.31 3.8 ± 4.8 3.8 ± 4.8 4.8 ± 7.5 8.3 ± 9.2

LENS-LesaNet [25,26] 70.00 84.58 2.7 ± 4.8 2.6± 4.7 5.7 ± 8.6 7.8 ± 10.3

DEEDS [10] 71.88 85.52 2.8 ± 3.7 3.1 ± 4.1 5.0 ± 6.8 7.4 ± 8.1

DLT-Mix [4] 78.65 88.75 3.1 ± 4.4 3.1 ± 4.5 4.2 ± 7.6 7.1 ± 9.2

DLT [4] 78.85 86.88 3.5 ± 5.6 2.9 ± 4.9 4.0 ± 6.1 7.0 ± 8.9

TransT [7] 79.59 88.99 3.4 ± 5.9 5.4 ± 6.1 1.8 ± 2.2 7.6 ± 7.9

TLT 87.37∗ 95.32∗ 3.0 ± 6.2 3.7 ± 5.2 1.7± 2.1 6.0± 7.7∗

Since the ground truth lesion center of all lesions in this dataset and the cor-
responding radius are defined, we could mutually track within a lesion pair.
Therefore, a total of 906 and 960 directed lesion pairs are used for evaluation in
validation and testing sets, respectively.

Evaluation Metrics. The center point matching (CPM) accuracy is selected to
evaluate the performance of lesion matching. As defined in [4], a match will be
counted correct when the Euclidean distance between ground truth and predicted
centers is smaller than a threshold (@10 mm: min(10 mm, rs), @Radius: rs). The
mean Euclidean distance (MED) in mm +/− standard deviation between ground
truth and predicted centers, and its projections in each direction (denoted as
MEDX , MEDY and MEDZ , respectively) [4] are also used for model evaluation.

Implementation Details. The proposed method is implemented using
PyTorch (v1.5.1). The network is optimized by Adam with initial learning rate
of 0.0001 and trained for 300 epochs. The batch size is 4 and the number of
parameters of the model is 5.98M. All CT volumes have been resampled to the
isotropic resolution of 1 mm before feeding into the network. This training setting
is used in all deep learning-based methods selected for comparison. For the affine
registration method [15] and DEEDS [10], following the setting of [4] and [10],
all CT volumes are resampled to an isotropic resolution of 2 mm.

4.2 Experimental Results and Discussion

Model Comparison. We took TransT [7] as baseline, and selected DLT and
other state-of-the-art approaches in [4] for comparison. Table 1 shows the quan-
titative results of these methods. Our method yields a CPM@10 mm of 87.37,
a CPM@Radius of 95.32, and a MED of 6.0 ± 7.7, which outperforms all the
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Table 2. Ablation study on each module and different thresholds. ∗ represents the p
value of paired t-test is smaller than 0.05.

SSS RAAM Global
Regressor

CPM@
10 mm

MED
(mm)

Threshold CPM@10 mm MED(mm)

0.9 83.57 6.80 ± 8.12

0.8 83.99 6.65 ± 7.99

79.59 7.58 ± 7.91 0.7 87.37∗ 5.98± 7.68∗

� 84.78 6.76 ± 7.86 0.6 86.70 6.26 ± 7.88

� � 86.58 6.30 ± 7.79 0.5 86.37 6.20 ± 7.83

� � � 87.37∗ 5.98± 7.68∗ 0.4 85.01 6.39 ± 7.98

compared methods in terms of both CPM and MED metrics. A paired t-test
is used on CPM@10 mm, CPM@Radius and MED to perform statistical tests.
Moreover, we observe that transformer-based methods, TransT and our TLT,
both achieving large improvements in terms of MEDZ compared with methods
that use convolution to compute similarity. This may be because the Transformer
focuses more on the information in the z-axis direction, which is also consistent
with physician cognition.

Ablation Study. To evaluate the effectiveness of various configurations in our
proposed method, we conduct ablation experiments from two aspects: module set-
ting and threshold setting. A paired t-test is also used for statistical tests. Table 2
shows the experimental results. The results show that accuracy drops with each
module change, which validates the competence of our proposed method. Mean-
while, it is observed that the threshold of 0.7 is much better than that of other
thresholds. Therefore, we choose 0.7 as the thresholds Tr in our TLT.

Discussion. As we observe, in ablation study, the SSS module leads to the
biggest improvement. To verify this, we also perform ablation study with only
one single module removed, as shown in Table 1 in supplementary materials. This
happens when there are many small lesions in the dataset, such as lung nodules.
If these small lesions are cropped on the original image, due to downsampling,
the feature map will become very small, and in the last several downsampling
processes will always become one voxel, which could lead to a decline in perfor-
mance. The SSS solves this problem by selecting voxels on the last feature map.
Even if only one voxel on the feature map is selected, this voxel can still obtain
more surrounding information in the networks than without SSS. Meanwhile,
based on our observations, we found that when the registration method failed,
sometimes our model would fail as well. This is because we use registration
to feed anatomical information to the transformer, and anatomical information
helps the transformer accelerate convergence, which forms a dependency. In addi-
tion, when there are similar lesions in similar locations, such as two solid nodules
at the edge of the right upper lung, and only a few layers difference in the z-axis
direction, the model will also be confused.
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5 Conclusion

This paper presents a novel Transformer-based framework for lesion tracking by
leveraging both the anatomical prior and the cross image relevance. We fur-
ther introduce a global regression to integrate multi-scale information while
using sparse selection strategy to reduce memory consumption. TLT achieves
the state-of-the-art performance on DLT dataset, significantly exceeding previ-
ous methods in lesion tacking accuracy. Future work includes multi-institutional
validation and reader studies to examine the efficiency improvement for physi-
cians in clinical setting.
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